1,019 research outputs found

    Flexible Authentication in Vehicular Ad hoc Networks

    Full text link
    A Vehicular Ad-Hoc Network (VANET) is a form of Mobile ad-hoc network, to provide communications among nearby vehicles and between vehicles and nearby fixed roadside equipment. The key operation in VANETs is the broadcast of messages. Consequently, the vehicles need to make sure that the information has been sent by an authentic node in the network. VANETs present unique challenges such as high node mobility, real-time constraints, scalability, gradual deployment and privacy. No existent technique addresses all these requirements. In particular, both inter-vehicle and vehicle-to-roadside wireless communications present different characteristics that should be taken into account when defining node authentication services. That is exactly what is done in this paper, where the features of inter-vehicle and vehicle-to-roadside communications are analyzed to propose differentiated services for node authentication, according to privacy and efficiency needs

    Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behaviour and large losses

    Full text link
    We report on hyperthermia measurements on a colloidal solution of 15 nm monodisperse FeCo nanoparticles (NPs). Losses as a function of the magnetic field display a sharp increase followed by a plateau, which is what is expected for losses of ferromagnetic single-domain NPs. The frequency dependence of the coercive field is deduced from hyperthermia measurement and is in quantitative agreement with a simple model of non-interacting NPs. The measured losses (1.5 mJ/g) compare to the highest of the literature, though the saturation magnetization of the NPs is well below the bulk one.Comment: 14 pages, 3 figure

    Spin Disorder and Magnetic Anisotropy in Fe3O4 Nanoparticles

    Full text link
    We have studied the magnetic behavior of dextran-coated magnetite (Fe3_3O4_4) nanoparticles with median particle size \left=8 nmnm. Magnetization curves and in-field M\"ossbauer spectroscopy measurements showed that the magnetic moment MSM_S of the particles was much smaller than the bulk material. However, we found no evidence of magnetic irreversibility or non-saturating behavior at high fields, usually associated to spin canting. The values of magnetic anisotropy KeffK_{eff} from different techniques indicate that surface or shape contributions are negligible. It is proposed that these particles have bulk-like ferrimagnetic structure with ordered A and B sublattices, but nearly compensated magnetic moments. The dependence of the blocking temperature with frequency and applied fields, TB(H,ω)T_B(H,\omega), suggests that the observed non-monotonic behavior is governed by the strength of interparticle interactions.Comment: 11 pages, 7 figures, 3 Table

    Trajectories of objectively measured physical activity in free-living older men.

    Get PDF
    BACKGROUND: The steep decline in physical activity (PA) among the oldest old is not well understood; there is little information about the patterns of change in PA and sedentary behaviour (SB) in older people. Longitudinal data on objectively measured PA data can give insights about how PA and SB change with age. METHODS: Men age 70-90 yr, from a United Kingdom population-based cohort wore a GT3X accelerometer over the hip annually on up to three occasions (56%, 50%, and 51% response rates) spanning 2 yr. Multilevel models were used to estimate change in activity. Men were grouped according to achieving ≥150 min·wk of MVPA in bouts of ≥10 min (current guidelines) at two or three time points. RESULTS: A total of 1419 ambulatory men had ≥600 min wear time on ≥3 d at ≥2 time points. At baseline, men took 4806 steps per day and spent 72.5% of their day in SB, 23.1% in light PA, and 4.1% in moderate-to-vigorous PA (MVPA). Mean change per year was -341 steps, +1.1% SB, -0.7% light PA, and -0.4% MVPA each day (all P 30 min increased from 5.1 by 0.1 per year (P = 0.02). CONCLUSIONS: Among older adults, the steep decline in total PA occurred because of reductions in MVPA, while light PA is relatively spared and sedentary time and long sedentary bouts increase

    Chain Formation by Spin Pentamers in eta-Na9V14O35

    Full text link
    The nature of the gapped ground state in the quasi-one-dimensional compound eta-Na9V14O35 cannot easily be understood, if one takes into account the odd number of spins on each structural element. Combining the results of specific heat, susceptibility and electron spin resonance measurements we show that eta-Na9V14O35 exhibits a novel ground state where multi-spin objects build up a linear chain. These objects - pentamers - consist of five antiferromagnetically arranged spins with effective spin 1/2. Their spatial extent results in an exchange constant along the chain direction comparable to the one in the high-temperature state.Comment: 6 pages, 5 figure

    Growth factor choice is critical for successful functionalization of nanoparticles

    Get PDF
    Nanoparticles (NPs) show new characteristics compared to the corresponding bulk material. These nanoscale properties make them interesting for various applications in biomedicine and life sciences. One field of application is the use of magnetic NPs to support regeneration in the nervous system. Drug delivery requires a functionalization of NPs with bio-functional molecules. In our study, we functionalized self-made PEI-coated iron oxide NPs with nerve growth factor (NGF) and glial cell-line derived neurotrophic factor (GDNF). Next, we tested the bio-functionality of NGF in a rat pheochromocytoma cell line (PC12) and the bio-functionality of GDNF in an organotypic spinal cord culture. Covalent binding of NGF to PEI-NPs impaired bio-functionality of NGF, but non-covalent approach differentiated PC12 cells reliably. Non-covalent binding of GDNF showed a satisfying bio-functionality of GDNF:PEI-NPs, but turned out to be unstable in conjugation to the PEI-NPs. Taken together, our study showed the importance of assessing bio-functionality and binding stability of functionalized growth factors using proper biological models. It also shows that successful functionalization of magnetic NPs with growth factors is dependent on the used binding chemistry and that it is hardly predictable. For use as therapeutics, functionalization strategies have to be reproducible and future studies are needed

    Crystallographically oriented magnetic ZnFe2O4 nanoparticles synthesized by Fe implantation into ZnO

    Full text link
    In this paper, a correlation between structural and magnetic properties of Fe implanted ZnO is presented. High fluence Fe^+ implantation into ZnO leads to the formation of superparamagnetic alpha-Fe nanoparticles. High vacuum annealing at 823 K results in the growth of alpha-Fe particles, but the annealing at 1073 K oxidized the majority of the Fe nanoparticles. After a long term annealing at 1073 K, crystallographically oriented ZnFe2O4 nanoparticles were formed inside ZnO with the orientation relationship of ZnFe2O4(111)[110]//ZnO(0001)[1120]. These ZnFe2O4 nanoparticles show a hysteretic behavior upon magnetization reversal at 5 K.Comment: 21 pages, 7 figures, accepted by J. Phys. D: Appl. Phy

    High-throughput quantification of carboxymethyl lysine in serum and plasma using high-resolution accurate mass Orbitrap mass spectrometry

    Get PDF
    Background: Carboxymethyl lysine is an advanced glycation end product of interest as a potential biomarker of cardiovascular and other diseases. Available methods involve ELISA, with potential interference, or isotope dilution mass spectrometry (IDMS), with low-throughput sample preparation. Methods: A high-throughput sample preparation method based on 96-well plates was developed. Protein-bound carboxymethyl lysine and lysine were quantified by IDMS using reversed phase chromatography coupled to a high-resolution accurate mass Orbitrap Exactive mass spectrometer. The carboxymethyl lysine concentration (normalized to lysine concentration) was measured in 1714 plasma samples from the British Regional Heart Study (BRHS). Results: For carboxymethyl lysine, the lower limit of quantification (LLOQ) was estimated at 0.16 μM and the assay was linear between 0.25 and 10 μM. For lysine, the LLOQ was estimated at 3.79 mM, and the assay was linear between 2.5 and 100 mM. The intra-assay coefficient of variation was 17.2% for carboxymethyl lysine, 9.3% for lysine and 10.5% for normalized carboxymethyl lysine. The inter-assay coefficient of variation was 18.1% for carboxymethyl lysine, 14.8 for lysine and 16.2% for normalized carboxymethyl lysine. The median and inter-quartile range of all study samples in each batch were monitored. A mean carboxymethyl lysine concentration of 2.7 μM (IQR 2.0–3.2 μM, range 0.2–17.4 μM) and a mean normalized carboxymethyl lysine concentration of 69 μM/M lysine (IQR 54–76 μM/M, range 19–453 μM/M) were measured in the BRHS. Conclusion: This high-throughput sample preparation method makes it possible to analyse large cohorts required to determine the potential of carboxymethyl lysine as a biomarker
    • …
    corecore